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Using an operator representation of  the effective diffusion coefficient we obtain a hyperbolic diffusion 
equation in a relaxational medium. 

We assume that in the system there occurs a chemical reaction or a certain relaxational process described by the 
phenomenological equation 

s = LA, (1) 

A 

where D = d/dt is the operator of  differentiation with respect to time and L is a phenomenological coefficient. The 
affinity of  process A in equilibrium vanishes. For a pair of  thermodynamic parameters y and x we can introduce an 
effective thermodynamic derivative [ 1 ] 
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The relaxation time rzX can be expressed by the usual method [2] in terms of  the affinity A: 

The index ~(~) corresponds to the instantaneous ("frozen") states; A(0) to the equilibrium states. 

In [ 1 ], using Eq. (2) there were introduced operator representations of  the adiabatic exponent, specific heat, and 
velocity of  sound; in [3], by a somewhat different method, operator representations of the thermal coefficients were 
introduced. 

Using (2) for the Gibbs function (y = G) and the number of  particles of  definite type (x = N) for Z = P, T, we 
obtain the operator representation of  the chemical potential ff = (aG/aN)p, T : 

= ~| + ~0--t~% Z=P,T, . (4) 
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We next consider single-component diffusion in an isothermal medium (this assumption is not fundamental, and the results 
obtained below can be extended to the case of  multicomponent diffusion for the presence of  gradients of  temperature and 
of  pressure). 

We apply the operator V to both sides of  (4), assuming that the chemical potential is a function of  the concentra- 
tion of  the diffusing component C: 

o c  , 

Writing Fick's law in the operator form 

and taking (5) into account, we obtain 
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(~ where in accordance with [4] the diffusion coefficient is determined from [? = L-'IP 8C ]p,r; p is the density of the 
substance. 

From (5) and (7), the operator form of the diffusion coefficient 

/)----D= + Do--D~ 
l +~5 

follows. We consider the mass balance for a volume V, in which the diffusion flow is determined by Eq. (7), and the 
sources a act: 

(8) 

0c S S t' o T d r  = -  av. 

Substituting Eqs. (7) and (8) into this expression and assuming P = const, we obtain the hyperbolic diffusion equation 

OCot q- "rr O2Cot z = C~'rr v2C -}- D~ -t- 1 -t- r ~ or. (9) 

The formalism considered above, in principle, can also be used for describing the diffusion of particles of a dispersed 
medium. In this case, following the general ideas of [5], we can add to the thermodynamic potential of the system the 
nonthermodynamic contribution G', depending on the dispersed particles in the system: 

Gd = G-t- G'. (10) 
8Ge OG' 

The calculation of this contribution or the direct calculation of the chemical potential ~a = ON 0N of the 

dispersed particles is a very complicated problem. The chemical potential was calculated in [6] for moderately concentrated 
dispersed systems. For the approach considered here, however, it is not necessary to have an explicit expression for the 
thermodynamic or chemical potential. 

Thus, applying the procedure considered above for the derivation of the hyperbolic diffusion equation to a 
dispersed system with thermodynamic potential (10) or chemical potential Pa, we again arrive at Eq. (10) and the operator 
representation of the diffusion coefficient of the dispersed particles (8). Since, within the framework of the thermodynamic 
approach, D~ and D o represent phenomenological coefficients, we can consider them as empirically determinable quantities. 

We illustrate the applicability of such an approach for the example of diffusion in an inhomogeneous fluidized bed. 
An approximate stochastic model of the process was proposed by Pakhaluev [7].* 

Assuming $ in (1) to be a random displacement of the aggregates of particles and representing A in the form 

OA ' OA 

after repeated differentiation of (1) with respect to time we arrive at the Langevin equation, based on which the theory in 
[71 was constructed: 

b~ + 1 b~ = F (t), (11) 
T 

where r is a certain characteristic time, and F (t) = L [ OA "~ ~ X is the random action on the aggregates of particles from 
k-0-x h 

the direction of the gas bubbles. Analysis of the spectral form of the solution of Eq. (11) [7] shows that the diffusion 
coefficient depends on the natural frequency o0 o of the fluidized system. By replacing the operator ~ in (8) by the eigen- 
value icoo, we obtain the spectral representation of the diffusion coefficient 

D ( o ) = D |  D0- -D 
1 -b i%~ (12)  

Here D O is the diffusion coefficient for 600 = O. 

D =  D~ -k - -  

Separating (12) into real and imaginary parts we obtain 

Do - -  D~ (%'c (13) 
1 q-(oox2 + i ( D ~  1 -~-030T2 

*For greater detail see V. M. Pakhaluev, "Investigation of the process of heat transport in retarded fluidized beds," 
Candidate's Dissertation, Sverdlovsk (1969). 
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The diffusion coefficient is determined as Re(D). If  we neglect diffusion transport for retarded states D ~  % 0, then, 
taking into account the expression for D O obtained in [7], the coefficient has the form 

T 2 

D,z -- 1 +D~ = K (W - -  We.r) 1 + (o~"c z ' (14) 

where K is a certain parameter, and W - W e is the excess velocity with respect to the critical velocity. This also is a basic 
result of [7]. It was confirmed by experiment from the definition of  the statistical characteristics of  fiuidized systems. 

The representation of  the operator [1 + ~[)1 -~ , derived in [ 1 ] and used in the present study, in the form of a 
series (the idea for such a representation came from Yu. A. Buevich) enables us (in an approximation that is linear with 
respect to rD) to obtain a somewhat different form of Eq. (9): 

OC ( D___~O ) 02C =DoV2C" 
0---7 @ z 1 + Ot---- ~ (15) 

The membership of  the last equation to a definite type (hyperbolic, parabolic, or elliptic) depends on the relation between 
the transport coefficients Doo and D o. A similar conclusion can also be obtained for the heat equation [8]. 

Equation (I 5) can be used for characterizing the transport of  the material from a binary fluidized layer as applied 
to the conditions for carrying out the experiment described in [9]. The dynamics for transporting (carrying) small particles 
from the separator is determined by the relation of  the flow for the entrainment of  small particles from the surface of  the 
fluidized bed (qen) and the admission of  the material from the mixing chamber (%). A mathematical model of the process 
includes Eq. (15), taking into account the finiteness of  the velocity of  motion of  the fine particles in the apparatus and 
the boundary conditions determining the flows qo and qen: 

OC 
- - D  ~ x = 0 =  q0, (16) 

- -  D OC x=h 
0---X =- qen" (17) 

In the first approximation, taking into account the considerably larger volume of  the mixing chamber in comparison 
with the separator the flow qo can be assumed constant (q0 ~ const). The quantity qe~ is determined as tile rate of  the 

first-order chemical reaction. For convenience in subsequent calculations we determine %, according to the value of  the 
-" h " 

mean concentration of  fine particles in the separator C- = �9 1 ~ CdX : 
h .1 

0 

qen = [3C. (18) 

Integrating (15) with respect to X in the limits from 0 to h and converting to fine-particle co_ncentrations C-, averaged over 
the height of  the separator, with account of (16)-(18) we have an equation for determining C(t) 

[ 0 ] 0C [~C+qo, (19) h I+B--~- Ot 

where h is the height of  the layer in the separator, and B - 1"(1 - D~/D 0). 

Taking into account the absence of  "fine particles" in the separator at the initial time (Clt=o = 0), we integrate (19) 
by the perturbation method. In an approximation that is linear with respect to B, we obtain an expression that determines 
the rate of  entrainment of  the fine particles from the separator: 

qen=  qo 1 - - e  ,2 1 - -  h-- ~ . (20) 

Figure 1 shows experimental data on the entrainment rate for various values of  the regime parameters of  the process. As 
can be seen from Fig. 1, the form of the curves corresponds to relations describable by Eq. (20) for various values of  
B. 
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Fig. 1. Rate of entrainment as a function of time 
for different velocities in the separator (W) and 
different initial heights of the bed (hbed): 1, 4, 7) 
hb~ d = 137; 3, 6, 9) 166 mm; 2, 5, 8) 200 ram; 
1, 2, 3) W = 1.1; 4, 5, 6) 1.4; 7, 8, 9) 1.8 m/sec, 
r, rain; ge,, g/sec. 

"fine 

NOTATION 

Fslot, return-flow slot area; F, cross-sectional area of the bed in the vertical plane; G*, instantaneous number of 
particles" in the apparatus. 
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